35 research outputs found

    Projecting the Bethe-Salpeter Equation onto the Light-Front and back: A Short Review

    Full text link
    The technique of projecting the four-dimensional two-body Bethe-Salpeter equation onto the three-dimensional Light-Front hypersurface, combined with the quasi-potential approach, is briefly illustrated, by placing a particular emphasis on the relation between the projection method and the effective dynamics of the valence component of the Light-Front wave function. Some details on how to construct the Fock expansion of both i) the Light-Front effective interaction and ii) the electromagnetic current operator, satisfying the proper Ward-Takahashi identity, will be presented, addressing the relevance of the Fock content in the operators living onto the Light-Front hypersurface. Finally, the generalization of the formalism to the three-particle case will be outlined.Comment: 16 pages, macros included. Mini-review to be printed in a regular issue of Few-Body Systems devoted to the Workshop on "Relativistic Description of Two- and Three-body Systems in Nuclear Physics" ECT* Trento, 19 - 23 October 200

    Factorizing the hard and soft spectator scattering contributions for the nucleon form factor F_1 at large Q^2

    Full text link
    We investigate the soft spectator scattering contribution for the FF F1F_{1}. We focus our attention on factorization of the hard-collinear scale QΛ\sim Q\Lambda corresponding to transition from SCET-I to SCET-II. We compute the leading order jet functions and find that the convolution integrals over the soft fractions are logarithmically divergent. This divergency is the consequence of the boost invariance and does not depend on the model of the soft correlation function describing the soft spectator quarks. Using as example a two-loop diagram we demonstrated that such a divergency corresponds to the overlap of the soft and collinear regions. As a result one obtains large rapidity logarithm which must be included in the correct factorization formalism. We conclude that a consistent description of the factorization for F1F_{1} implies the end-point collinear divergencies in the hard and soft spectator contributions, i.e. convolution integrals with respect to collinear fractions are not well-defined. Such scenario can only be realized when the twist-3 nucleon distribution amplitude has specific end-point behavior which differs from one expected from the evolution of the nucleon distribution amplitude. Such behavior leads to the violation of the collinear factorization for the hard spectator scattering contribution. We suggest that the soft spectator scattering and chiral symmetry breaking provide the mechanism responsible for the violation of collinear factorization in case of form factor F1F_{1}.Comment: 25 pages, 6 figures, text is improved, few typos corrected, one figure added, statement about end-point behavior of the nucleon DA is formulated more accuratel

    Demonstration of a novel technique to measure two-photon exchange effects in elastic e±pe^\pm p scattering

    Full text link
    The discrepancy between proton electromagnetic form factors extracted using unpolarized and polarized scattering data is believed to be a consequence of two-photon exchange (TPE) effects. However, the calculations of TPE corrections have significant model dependence, and there is limited direct experimental evidence for such corrections. We present the results of a new experimental technique for making direct e±pe^\pm p comparisons, which has the potential to make precise measurements over a broad range in Q2Q^2 and scattering angles. We use the Jefferson Lab electron beam and the Hall B photon tagger to generate a clean but untagged photon beam. The photon beam impinges on a converter foil to generate a mixed beam of electrons, positrons, and photons. A chicane is used to separate and recombine the electron and positron beams while the photon beam is stopped by a photon blocker. This provides a combined electron and positron beam, with energies from 0.5 to 3.2 GeV, which impinges on a liquid hydrogen target. The large acceptance CLAS detector is used to identify and reconstruct elastic scattering events, determining both the initial lepton energy and the sign of the scattered lepton. The data were collected in two days with a primary electron beam energy of only 3.3 GeV, limiting the data from this run to smaller values of Q2Q^2 and scattering angle. Nonetheless, this measurement yields a data sample for e±pe^\pm p with statistics comparable to those of the best previous measurements. We have shown that we can cleanly identify elastic scattering events and correct for the difference in acceptance for electron and positron scattering. The final ratio of positron to electron scattering: R=1.027±0.005±0.05R=1.027\pm0.005\pm0.05 for =0.206=0.206 GeV2^2 and 0.830ϵ0.9430.830\leq \epsilon\leq 0.943

    Determination of the Titanium Spectral Function From (e, e\u27p) Data

    Get PDF
    The E12-14-012 experiment, performed in Jefferson Lab Hall A, has measured the (e,e′p) cross section in parallel kinematics using a natural titanium target. In this paper, we report the analysis of the dataset obtained in different kinematics for our solid natural titanium target. Data were obtained in a range of missing momentum and missing energy between 15 ≲ pm ≲ 250  MeV/c and 12 ≲ Em ≲ 80  MeV, respectively, and using an electron beam energy of 2.2 GeV. We measured the reduced cross section with ∼7% accuracy as a function of both missing momentum and missing energy. Our Monte Carlo simulation, including both a model spectral function and the effects of final-state interactions, satisfactorily reproduces the data

    Comparing proton momentum distributions in A=2A=2 and 3 nuclei via 2^2H 3^3H and 3^3He (e,ep)(e, e'p) measurements

    Full text link
    We report the first measurement of the (e,ep)(e,e'p) reaction cross-section ratios for Helium-3 (3^3He), Tritium (3^3H), and Deuterium (dd). The measurement covered a missing momentum range of 40pmiss55040 \le p_{miss} \le 550 MeV/c/c, at large momentum transfer (Q21.9\langle Q^2 \rangle \approx 1.9 (GeV/c/c)2^2) and xB>1x_B>1, which minimized contributions from non quasi-elastic (QE) reaction mechanisms. The data is compared with plane-wave impulse approximation (PWIA) calculations using realistic spectral functions and momentum distributions. The measured and PWIA-calculated cross-section ratios for 3^3He/d/d and 3^3H/d/d extend to just above the typical nucleon Fermi-momentum (kF250k_F \approx 250 MeV/c/c) and differ from each other by 20%\sim 20\%, while for 3^3He/3^3H they agree within the measurement accuracy of about 3\%. At momenta above kFk_F, the measured 3^3He/3^3H ratios differ from the calculation by 20%50%20\% - 50\%. Final state interaction (FSI) calculations using the generalized Eikonal Approximation indicate that FSI should change the 3^3He/3^3H cross-section ratio for this measurement by less than 5\%. If these calculations are correct, then the differences at large missing momenta between the 3^3He/3^3H experimental and calculated ratios could be due to the underlying NNNN interaction, and thus could provide new constraints on the previously loosely-constrained short-distance parts of the NNNN interaction.Comment: 8 pages, 3 figures (4 panels

    Strangeness Suppression of q(q)over-bar Creation Observed in Exclusive Reactions

    Get PDF
    We measured the ratios of electroproduction cross-sections from a proton target for three exclusive meson-baryon final states: ΛK+\Lambda K^+, pπ0p\pi^0, and nπ+n\pi^+, with the CLAS detector at Jefferson Lab. Using a simple model of quark hadronization we extract q-qbar creation probabilities for the first time in exclusive two-body production, in which only a single q-qbar pair is created. We observe a sizable suppression of strange quark-antiquark pairs compared to non-strange pairs, similar to that seen in high-energy production.Comment: 5pages, 2figure

    First measurement of the helicity asymmetry E in eta photoproduction on the proton

    Get PDF
    Results are presented for the first measurement of the double-polarization helicity asymmetry E for the η\eta photoproduction reaction γpηp\gamma p \rightarrow \eta p. Data were obtained using the FROzen Spin Target (FROST) with the CLAS spectrometer in Hall B at Jefferson Lab, covering a range of center-of-mass energy W from threshold to 2.15 GeV and a large range in center-of-mass polar angle. As an initial application of these data, the results have been incorporated into the J\"ulich model to examine the case for the existence of a narrow NN^* resonance between 1.66 and 1.70 GeV. The addition of these data to the world database results in marked changes in the predictions for the E observable using that model. Further comparison with several theoretical approaches indicates these data will significantly enhance our understanding of nucleon resonances

    First measurement of the polarization observable E in the p→(γ→,π<sup>+</sup>)n reaction up to 2.25 GeV

    Get PDF
    First results from the longitudinally polarized frozen-spin target (FROST) program are reported. The double-polarization observable E, for the reaction γpπ+n\vec \gamma \vec p \to \pi^+n, has been measured using a circularly polarized tagged-photon beam, with energies from 0.35 to 2.37 GeV. The final-state pions were detected with the CEBAF Large Acceptance Spectrometer in Hall B at the Thomas Jefferson National Accelerator Facility. These polarization data agree fairly well with previous partial-wave analyses at low photon energies. Over much of the covered energy range, however, significant deviations are observed, particularly in the high-energy region where high-L multipoles contribute. The data have been included in new multipole analyses resulting in updated nucleon resonance parameters. We report updated fits from the Bonn-Gatchina, J\"ulich, and SAID groups.Comment: 6 pages, 3 figure
    corecore